MediVa : 수학 시험의 기술(2012)_4월모의 대비2 - 행렬의 성질 정오판정
게시글 주소: https://susi.orbi.kr/0002858463
수학시험의기술(2012)_3.pdf
안녕하세요. MediVa입니다. 4월 모의고사 대비 자료입니다.
3회 정도가 연재될 것 같고, 이번 자료는 2번째로 행렬의 정오판정에 관련된 자료입니다.
작년 4월 모의고사의 중요한 기출과 수능의 출제 요소를 풀 수 있는 '기술'을 정리했습니다.
이 자료는 <수학 시험의 기술>에 바탕을 두고 만들어졌습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄱㄱㄱㄱ 어그로성 제목은 안써보겟으
-
진짜냐 ㅋㅋ 에이 아니겠지
-
속보) 우리 부대 육상 취사장에 노래방 마이크 들어옴 1
그래서 병장이 노래틀고서 한 소절씩 부르게 입에다 갖다대준다 ㅋㅋㅋㅋ 츄라이 할 맛 나노
-
올해 서울대 입학하시는 과외쌤을 구해서 수업하려고 하는데 고3인 마당에 과외 경력이...
-
심멘.... 0
담주 수요일 인강 개강인데 에필로그 생글 인강민철을 그냥 인강민철은 매일 푼다고...
-
아무리 노력을 해도 타고난 머리는 무시를 못하겠음 하루도 안 쉬고 일요일에도...
-
우제 봄
-
담뇨단 고고혓 6
담요는 없고 이불이긴함... 사문고고혓 근데 경제+사문이면 씻어야함 씻지 말아야함?
-
케리아만 하면 바지 S사는게 맞을까요?
-
드디어 대민주가 아이돌을 정상화하네 (니게tv 개국 73일차)
-
400명대 지원 106명 뽑
-
작년 6 9 1이었는데 수능 3 떴는데 진득하게 독해력 늘리고 싶은데 어떤분...
-
밥머거야징 3
흐흐
-
물가 정상화 부탁
-
분석하다보니 지문을 참 잘 만들었다는 생각이 드네요. 배울점도 굉장히 많고....
-
술자리를 통해서밖에 없나......
-
경희대 이대 2
경희대 미디어랑 이대 통합선발 붙고 중대 경영은 떨어질것같은데 경희대가 나을까요...
-
맞팔구 3
-
상위 지거국, 광명상가 라인 성적이에요 보통 이정도면 고시엔딩나는데 그냥 교대가는게...
-
버거킹 - 햄버거 자체가 묵직함, 먹으면 배가 꽉 찬다 맘스터치 - 위아래로...
-
일반식으론 649 문과 2%쯤 서강 중국문화 불합 고대 사회 합
-
대학 붙은 사람이나 다니는 사람은 오르비 하면 안됨 3
낼 점메추 해주세요
-
성대 갤주는 누구냐 11
하니는 의대갈거니 빠지고 나와라 도전장을 내밀겠다
-
원래 이렇게 낮은가......???????30퍼 조금 밖에 안 넘는데생각보다 너무...
-
연락 요청은 가끔 오는데 맨날 귀찮아서 씹는중
-
어떤가요? 연봉이나 가서 어떤 일을 하게되는지가 궁금하네요
-
안정카드로 지거국 수 중 전장인곳 썼는데 잘한거겠지? 지거국수도 순위가 있나?...
-
외대 노어과에요 2칸이었는데 나름 좋은결과 얻은 것 같아서요.. 외대식으로...
-
상위권 더 얼마나 들어올까요..
-
정법 하시는분? 0
손!!!
-
진짜 개웃기네ㅋㅋㅋㅋ
-
설대, 고대, 성대가 전통적으로 법대가 유명해서 그런지 이런 쪽 아웃풋이 훌륭함.
-
구토 0
젖닌
-
거의 25명..허수일 확률은?
-
입갤 5
-
그냥 무난하게 면허따기??? 아님 토익공부까지 해볼까요??
-
ㅈㄱㄴ
-
둘다 안정은 아니지만, 추합으로 붙는다는 희망을 가지고 있습니다. 벌써부터 가족간에...
-
하 슬프다
-
아 연애 마렵다 5
조그맣고 귀여운 여자친구가 곁에 있었으면 좋겠어요
-
피곤햐서 일찍?잤는데...
-
서강대 등록금 4.85% 인상하기로
-
딸기시루 사오신다는데 넘 행복해요
-
오늘 날씨 뭐냐 6
거의폭설이네요 조심
-
특정 학과 점공이 들어왔다 나갔다 하네 계속
-
얼부기 2
혼돈부기
3번째 문제는 4월모의고사 작년 기출에서 생각보다 정리할 내용이 많지 않아서 4월 모의고사 대비에서는 다루지 않고, 4월 모의가 끝난 후 6월 모의고사 대비기간에 수능, 평가원 기출로 다루는 편이 나을 듯 합니다. 보다 좋은 자료로 찾아뵙겠습니다.
좋은자료감사합니다 Goo:-D
좋은 자료 감사합니다
감사합니다~~
행렬에서 곱셈의 교환법칙이 성립하는 경우는 A 가 B또는 B의 역행렬에 관해 표현되면 됩니다.
ㄱ 에서 ㅡ2B 를 우변으로 이항하면 A= 2B+E 로 A가 B에 관해 표현되죠?? 그럼 교환법칙이 성립하는 겁니다.
언제 반례를 다 찾고 있습니까 ㅡㅡ; A^2=B^2 처럼 양쪽 다 거듭제곱 형태면 교환법칙이 성립하지 않구요.
한 행렬이 다른 행렬의 다항식 형태로 표현되는 경우라고 해야 좀 더 맞는 표현일 것 같네요.
간단한 경우로 xA + yB =kE 가 되는 형태는 제 자료에도 명시를 해 두었습니다.
A가 B에 관해 표현된다는 말은 'A= B에 대한 다항식'의 형태를 말씀하시는 것 같은데,
그 경우는 설명에서는 빠져 있던 것 같습니다.
그리고 반례를 찾는 것은 답을 확신하기 위한 수단입니다. 제 원고를 보시면 알겠지만
반례를 찾는 과정 중 '여기까지 의심해 보고 시간이 없으면 넘어가라'고 서술을 해 두었습니다.
하지만, 문제를 풀다 보면 이런 교육청 문제처럼 정형화된 형태만 등장한다고 장담할 수 없으므로,
적절한 반례를 찾는 것 역시 연습의 대상이 되며, 그렇기 때문에 한 문제를 깊이 공부하기 위한 자료의 특성상 반례를 찾아가는 흐름에 대해서 서술했습니다. 그리고 제가 찾은 반례도 하늘에서 뚝 떨어진 것이라기보다는 어느 정도 논리에 의해서 반례의 범위를 줄이는 과정에 초점을 맞추어 서술하고자 하였습니다.
행렬의 성질 문제는 수능에 나온다면 계속 지금까지 보지 못한 형태로 제시할 확률이 높기 때문에,
특정한 행렬의 구조들을 달달달 외우기보다는 문제에서 추론해서 풀어 가는 것이 필요합니다.
그렇기 때문에 이 자료에는 다소 장황할지 모르지만, 최대한 일반적이고 보편적인 추론 과정을 적고자 하였습니다.
부족한 자료에 대한 비판 감사합니다.