고3 학교내신문제(수학) 논란이 있습니다. 해결좀해주세요..
게시글 주소: https://susi.orbi.kr/0002944509
문제는 쉬운데 선지가 이상합니다
1번과 4번은 같은것이 아닌가요?
시험칠 때 솔직히 답은 바로 나왔는데 선지가 이상해서 ㅡㅡ
학교 선생님은 항이 다르다고 하시면서(??) 답이 1번이라고 주장하시는데
(사실 저도 첨에 1번 찍었다가 뒤에 4번이 너무 없길래 4번찍은..ㄷㄷ)
왜 1번과 4번이 다른지 이해가 안갑니다. 해결좀 해주세요..
이 문제로 자칫하면 1,2등급이 갈릴 수 있습니다 ㅠㅠㅠㅠ 도와주세요ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅇ
-
진정한 예술가는 1
이걸 어케 변형하는지 보여주마
-
아 싸랑해요
-
부루마불 1
부루마블이 아녔음? 지금까지 이렇게 알고 있엇는데...
-
벽 ㅈㄴ 느꼈던 사람 오른손 깁스하고 암산으로 풀고 다 맞음
-
예전에 극장에서 봤을 때 생각보다 재미가 없었음
-
ㅠㅠ한번더하고ㅠ싶은데 가능성잇을까요 ㅠ
-
수리논술 1
수학 2등급뜨는데 건대나 시립대 수리 논술 써볼까요 학종러입니다
-
컴공 무물 7
:-)
-
수학을 잘한다는건 뭔가요? 암산이 빠르다? 발상적이다? 논리적이고 구멍이없게...
-
인천대 공대에서 동국대 경제가면 반수 망한 것까진 아니지않나 4
왜 성공이란 생각이 안들지
-
실모칠 땐 대충 쓱쓱 풀고 18분컷씩 내고 했는데 수능은 틀리면 ㅈ된다라는 마인드로...
-
추합 역대 인원이 5명, 7명, 8명인데 미점공 인원이 4명임. 앞에서 빠질 걸로...
-
큰 건 아니고 남들이 보기엔 사소한것들일수 있는데 나는 그게 겹겹이 쌓이면 멘탈이 무너져...
-
저게 어케 가능하지
-
현재 김기현T 파데+킥옾하면서 기본개념 복습하고 있는데 킥오프 워크북까지는 굉장히...
-
애케플 비싸서 강화유리 붙여서 쓸까하는데
-
쉬워요 2
-
지x부x는 0
yy yyy yy yyy yyyyyyyy. yy zm wd, 이 때, zw의 값을 구해보시오.
-
친구들과 그냥 오붓하게 차한잔하게 잠깐이면 돼 또 맘짠하게
-
그림 나왔습니다 11
-
집 가야지
-
뭐잇음요? 전 좋고아니고 평가할 대가리가 못돼서 몰름
-
ㅇㅓㄴㅈㅔㄴㄱㅏ ㅁㅏㄴㄴㅏㄱㅔㄷㅗㅣㄴㅡㄴ ㅇㅓㄴㅡ ㅇㅕㅇㅎㅗㅏㅇㅗㅏㄱㅏㅌㅇㅡㄴ...
-
ㅈㄱㄴ
-
앞부분 풀면서는 아 이거 애들 국어못하면 털리겠다 싶었고(실제로 국어못하는 친구...
-
고1 첫 시험을 보고 정시파이터로 돌렸습니다(물론 땅치며 후회중) 첫 시험...
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 3
논리싫증주의자는 관심이 없다
-
26 1
만원
-
ㅜㅜ, ㅇㅗㄴㅡㄹㄴㅓㅁㅜㅊㅜㅇㅜㅓㅈㅣㄴㅉㅏ
-
수학 고수분들 5
수분감 한번 다 돌고 뉴런 듣나요 아님 병행하시나요 아님 뉴런다 듣고 푸시나여?...
-
게임은 안해봣어도 이건 알지 (투표안올림)
-
올해 사문 느낌 10
일단 9 14가 좀 빡셋음+4번이 좀 아리까리했음 그리고 6번인가 5번인가 어디서...
-
인강해드릴게요 1
과목은 윤리와사상입니ㅏㄷ.
-
개 부럽다
-
마켓컬리 일당 다시 생각해봐도 쏠쏠하다 다음 주 일요일에 다시 뛰어볼까
-
친척들이 얼마나 많이 계신가 아닌가
-
화1과 지1을 비교했을때 화1의 단점이 뭐라고 생각하시나요??? 14
화1이 상대적으로 않좋은점이 뭐라고 생각하시나요???
-
대성패스 양도 0
받으실분 36에 임정환T 생윤 교재패스 + 배송비 무제한 무료 입니다.
-
조회수가 오른다!!!!! 나이스!!!! 너 저승!!!
-
맞팔 2
9함
-
재능충앞에서는 아무것도 아니다
-
나가야겟다
-
씨파는 8
보통 몇년 잡나요? 연휴때 보니 사촌이 2월 말쯤에 처음 시험 본다는 거 같던데
-
재종에 있었음. 코시국이었는데 마스크 색깔로 이미 다 알려지고(색이 특이핶음) 그...
같은 항인것 같은데요??
ㅋㅋ 걍 n=1넣고 n=2넣고 n=3넣고 다 넣어보면 다 똑같은데 왜 안되냐고 따져보세요 ㅋㅋ
http://imgur.com/F5PMN
http://www.wolframalpha.com/input/?i=%281%2B%28-1%29%5E%28n%2B1%29%29%2F2
http://www.wolframalpha.com/input/?i=%281%2B%28-1%29%5E%28n%2B1%29%29%2F2+-+%281-%28-1%29%5E%28n%29%29%2F2
일단 기말고사 공부에 집중하고 금욜날 당장 따지러가야겠습니다 감사합니다 ㅠㅠ
문제 잘못 낸 걸로 인정하면 시말서도 써야하고 교장,감한테 눈치도 보이고 해서 쉽게 인정하지 않을 겁니다. 끝까지 밀어붙이세요
제가 아는데 그런 류의 선생 특징이 절대 자기 잘못 인정안합니다.
교장실이나 교무실까지 가서 따져야하는 상황이 올수도 있습니다.
그래야만 인정하는 종자들 입니다.
꼭 승리 하십시오. 건승을 빕니다.
상대를 이기는 좋은 방법 중 하나는, 압도적인 힘으로 밀어붙이는 것입니다. 도저히 반박할 수 없는 논리적인 힘으로 압도해버리시면 됩니다.
대충 이렇게 argue할 수 있겠네요.
수열은 자연수를 정의역으로 갖는 함수로 정의됩니다. (이는 각 수학교과서에서도 확인하실 수 있습니다.) 그리고 함수는 수학적으로
(1) 정의역 X
(2) 공역 Y
(3) 함수 대응규칙 F. 좀 더 구체적이고 형식적으로 설명하자면, X와 Y의 Cartesian product X×Y = {(x, y) | x∈X, y∈Y} 의 특수한 부분집합 F를 가리키며, 이때 F는 다음 두 조건을 만족해야 한다.
(i) 임의의 x∈X 에 대하여, 어떤 y∈Y 가 존재하여, (x, y)∈F 를 만족한다. (즉, 정의역의 모든 원소마다 함수값이 있다.)
(ii) 각각의 x∈X 에 대하여, 만약 (x, y)∈F 이고 (x, z)∈F 이면, y = z 이다. (즉, 각각의 정의역의 원소마다 오직 하나의 함수값만 대응된다.)
이렇게 세 요소의 순서쌍 (X, Y, F)로 정의됩니다. 그리고 이때 (x, y)∈F 라는 관계를 y = F(x) 로 적습니다.
따라서 집합의 상등으로부터 함수의 상등이 자연스럽게 따라나오며, 이 내용은
1. 정의역이 일치하고
2. 공역이 일치하며
3. 정의역의 각 점마다 함수값이 같으면
⇒ 두 함수는 같다.
라는 내용으로 요약할 수 있습니다. 물론 함수의 엄밀한 정의는 모르신다손 쳐도, 위 함수의 상등 내용 자체는 이미 교과과정상 배웠으므로 충분히 근거로 사용할 수 있지요.
이 모든 내용들을 종합하면, 함수의 상등 조건에 의하여 각 n의 값마다 a(n) = b(n)을 만족하는 두 실수열(공역이 실수인 수열) {a(n)}, {b(n)} 은 정의로부터 같은 수열이 됨을 알 수 있습니다.
즉, 수열은 그 수열을 정의하는 식에 의존하는 것이 아니라, 그 식의 각 지점에서의 값에 의존합니다. 따라서
a(n) = {1 - (-1)ⁿ}/2
b(n) = {(-1)ⁿ+1 + 1}/2
c(n) = sin²(πn/2)
등은 모두 동일한 수열입니다.
게다가 n이 정수라는 조건만 추가하면, 물량공급 님의 포스팅에서 확인할 수 있듯이, 정수지수의 정의로부터
{1 - (-1)ⁿ}/2 = {1 + (-1)ⁿ+1}/2
임이 따라나옵니다. 때문에 사실상 주어진 식은 함수가 아닌 식으로써도 동등하다고 말할 수 있습니다. 결론적으로 두 선지는 '근본적으로' 같은 선지입니다.
ㅋㅋㅋㅋ 흔한 선생 관광보내기.txtㅋㅋㅋ 이거 그래도 복붙해서 프린트하고 보여주세요 ㅋㅋ 진짜 쩌시겠네요
으앜ㅋㅋㅋㅋ ㅋㅋㅋㅋ ㅋㅋㅋㅋ
감사합니다!! 이렇게 많은 댓글이 달릴 줄은 몰랐네여.. ㅋㅋ 내일 시험끝나는데 이 자료들 다 정리해서 금욜날 선생님한테 보여줘서 꼭 1등급 받아내고야 말겠습니다ㅋㅋ 감사합니다!!