(A+E)(A+2E)(A+3E) = O 일 때
게시글 주소: https://susi.orbi.kr/0003054650
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개념은 학원 다니면서 하고 있습니다. 그래서 미적 개념 바로 다음 강의 들을...
-
복전에 포토샵과 에펙 수강할 수 있는 수업이 있었다 0
애니메이션 동영상 제작 해보는게 버킷리스트 중 하나라 심장 쿵덕대는중
-
어어 기침난다 4
독감은 아니어야 한다...
-
확통은 개정 이후껀 아얘 안 풀어봄 골수 미적러다 이거야
-
예비고3 언미물생인데,, 고2모고 기준으로 국영탐탐은 1컷, 수학은 백분위...
-
그냥 들어. 7
에메 신곡 많관부.
-
중대ict 1
몇바퀴 예상하시나요 353인데 붙을 확률 몇임?
-
오랜만에 허접 그림 올립니당... 그림 연습도 할 겸 오르비하다 재밌는 게시글...
-
미기확 2
3도류 드가자
-
기하에 벽 느낀 문제 26
-
서울대식 - 인문 361.8 자연 362.3 연세대식 - 인문 646.75 자연...
-
무진기행 0
충격적이네
-
신종 플러팅 2
내일 써본다
-
졸려요 4
졸려요 으억
-
사회적 지능이 낮은 사람들은 대체 왜 그러는 거임?? EQ 박살난 사람들은 내가...
-
이건 좀 혹하는데
-
그냥 쎈이나 자이 가지고 과외하려고 했는데 조금 눈치보이네요
-
난 뭔가 0
사탐9과목 과탐 8과목 미적분기하 다 해보고싶음
-
PH 중화반응 식초 기체추론 동위원소 양적관계 몰농도 산화수 짜맞추기 등등...
-
숙대랑 숭실 수시 어문계열로 둘 다 붙었는데 로스쿨 쪽 생각이 있어서 숙대...
-
보통 쉬운 편임 다 주어져 있을 확률이 높은 거라
-
학벌을 떠나서 지능이 낮은 사람은 진짜 만나기가 쉽지 않음 근데 학벌이 어느정도의...
-
아침저녁으로 4시간씩 끊어서 두 번 자네요
-
재밋는 미연시 게임 중 13
두근두근 문예부
-
인하공전 항공운항과 스튜어디스 지망생 분들이라 키도 크고 외모도 ㄷㄷ
-
얘 내년에 입을 과잠을 내가 선택한다고 생각하니까 소홀히 할 수가 없음 ㅋㅋ
-
68 95 99.7 10
보통 신뢰구간 구할 때는 a=0.05를 쓰죠 점공에서는 예측 구간이라고도 합니다
-
제목 그대로 입니다. 문닫고라도 들어갈 수 있을까요?
-
대학을 더 잘가던데 ㄹㅇ루
-
기차에서 잠안올것같은데 유튜브영상보면 멀미나나여?? 기차별로안타봐서몰라여..
-
벌레 ㅈㄴ 싫음 5
그냥 순간 몸이 굳고 패닉 옴 극복불가능 극복한 사람 있음?
-
이거 꼭 해야해요? 책값 왤케 비쌈 그냥 개념 확인용같은데
-
그냥 국숭세단까지면 ok 너무 학벌을 많이 보고 싶지도 않기도하고....
-
연애하고 싶다 0
ㅏ
-
Z
-
삽 졸린데 8
애들 사이에서 못 자겟어
-
고2 모의고사때 쭉 1이었고 10월때 2등급(구차한 변명이지만 이때 1등급 비율이...
-
그냥 동문이랑 사귀는 게 깔끔할듯요 cc는 좀 아닌 것 같고 같은 사과대라면...?...
-
지금 노는거 조금씩 줄여서 대학 잘 가고 줄인거 수능 끝나고 순도 100퍼센트로 놀...
-
이거 떨어지면 1
하늘이 절 버렸다고 생각할게요..
-
매직키보드 실까 고민되는데…
-
더러운거 질색이에요;; 편의점 바퀴벌레때문에 관둠 쿠팡은 육체적으로 힘들어서 ..
-
궁금하네요
-
윤석열은 9수까지해서 사시패스를 했는데 조국은 사시패스도 안하고 설법 교수된거 ㅇㅇ
-
말안된다……
-
작년에 학원끝나고 걸어가고 있는데 길에서 사람보고 하수구에 뛰어드는 쥐봐서 충격먹었음
참
참
이차식 만족하는 행렬이 하나밖에 없어서 그런거 아닌감..
조금 자세히 적어 보실 수 있나요?
잘 모르겠네요. 참일 거 같습니다. 셋 중 하나의 디터미넌트인가? 그게 0이여야 하므로 참이 될 거 같아요.. 아닌가요?
셋 중의 하나의 determinant가 0일 때 셋 중 적어도 하나가 O가 되는 이유가 무엇인가요?
아 오개념이였네요. 감사합니다 이런 글 올려주셔서 ㅠㅠ
D(0)D(0)이 반드시 영행렬이 나오는 것이 아닌데....
참 아님?
일단 셋다 역행렬 존재 안하는 경우 뒤의 세 결론 모두 성립하고
셋중하나만 역행렬 존재하면 적어도 셋중 하나는 성립하는거니까 해당되고
두개 역행렬 존재하고 하나가 0행렬이면 적어도 셋중 하나는 성립하고
셋다 역행렬 존재하는 경우는 있을수 없고
A+E, A+2E, A+3E 모두 역행렬이 존재하지 않을 때 결론이 성립하는 이유가 무엇인가요?
A+aE, A+bE둘다 역행렬 존재안하면
두개 곱하면 0행렬이 된다는 명제를 본적이 있음
참. A+kE 꼴의 행렬중 역행렬이 존재하지 않는 행렬은 최대 2개까지 존재합니다. 성분으로 잡아서 ad-bc를 해보면 k에 관한 2차식이 나오므로...
따라서 곱해져있는 세개중 하나는 적어도 역행렬이 존재하고, 위에 주어진 식은 교환법칙이 성립하기 때문에 역행렬을 양변에 곱하면 오른쪽과 같은 결론이 됩니다.
참.
증명) (A+E)(A+2E)(A+3E) = O 일 때 (A+E)(A+2E) = O 또는 (A+2E)(A+3E) = O 또는 (A+3E)(A+E) = O이다.
일단 중간에 사용할 소증명부터
(A+E)(A+2E)(A+3E) = O 이면 (A+E) (A+2E) (A+3E) 셋중에 적어도 하나는 영행렬이 존재하지않습니다.
(소증명 귀류법: 셋다 역행렬이 존재한다면 E=0 이되어 모순 . 따라서 셋중에 적어도 하나는 영행렬이 존재하지않습니다.)
그럼 첫째 ,
역행렬이 존재하지 않는것이 셋중에 하나만 이라면 나머지 둘은 역행렬이 존재하므로
예를들어 (A+E)는 역행렬이 존재하지 않고 (A+2E)(A+3E) 는 역행렬이 존재한다면
역행렬을 각각 곱해주면 A+E = 0
조건에 만족
마찬가지로 하면 A+2E=0 일때와 A+3E=0 인경우도 나오므로 조건에 만족
두번째 역행렬이 존재하지 않는것이 셋중 둘이라면
예를 들어 (A+E) 와 (A+2E) 은 역행렬이 없고 (A+3E) 은 역행렬이 있다면
양변에 역행렬을 곱해서 (A+E)(A+2E) = O 조건에 만족
나머지 다른경우도 마찬가지 방법으로 만족
마지막 (A+E)(A+2E)(A+3E) 셋다 역행렬이 없다면???
하지만 이런경우는 존재하지 않습니다. 이것은 이차방정식의 이론으로 증명할수있는데
귀차니즘으로 생략 (이차방정식의 서로다른근은 최대 2개 까지만 가능하다는것으로 증명가능)
그러하면 어떤경우던지 항상 만족
증명끝
그리고 이 방법 말고도 다른방법이 있으나
고딩과정 에서 배운 내용으로 하는 증명중 가장 하찮?(하찮다기보단 단순하고 기본적인 내용)
은 내용으로만 증명을 해보았습니다.
박승동 선생님 께서 말씀 하시길 수학공부는 기본개념의 심화와 응용!
정말 기본개념에 충실한 학생들보면 어려운 문제도 결국 스스로 고민해서
학원에서 가르쳐주는 특별한 정리나 공식 , 고등수준 초월한 과정 없이도
결국 풀어내더군요. 항상 기본개념을 제대로이해하고 응용할 방법을 연구하는것이 가장 중요한것 같습니다.
님좀짱!
참.
A+E가 역행렬이 존재하면 (A+2E)(A+3E)=0, A+3E가 역행렬이 존재하면 (A+E)(A+2E)=0,
A+E, A+3E 둘다 역행렬이 존재하지 않는다면 (A+E)(A+3E)=0 이지 않나요?
둘째 줄에서 저도 그 이차식 그건 스킵ㅋ 위에랑 같은 말이네여
무조건참이죠 세항의곱으로된영인자는 존재하지않으니깐요ㅎ 각각독립항이0행렬이거나 두인접한행렬 이영인자인경우 이게끝이니깐ㅋ
참임. 이거 수학시간에 배웠는데. ㅋㅋㅋ증명까지