4월 수학1/2 수업 안내(주말까지 할인)
게시글 주소: https://susi.orbi.kr/00055891984
안녕하세요.
상승효과 이승효입니다.
선택과목 무료특강.
예상을 훌쩍 뛰어넘는 반응! 신청자가 270명 ㅠㅠ
저도 오랜만에 100%라이브 특강이라
아주 재밌게 잘 마쳤습니다. 정말 감사합니다!!!
신청자에게는 전원 쪽지로 링크 보내드렸는데
혹시라도 못받았다면 쪽지주세요.
자~ 오늘의 본론은 공통과목!
들어가기 전에 잠깐...
수강 할인 행사가 진행되고 있으니 놓치지 마세요.
프로모션이 이번주말에 끝난다고 하네요.
"수학1 개념속성 + 기출분석" 강좌 패키지 할인!
"수학2 셀렉션 - 삼차함수" 특강 (2만원입니다.)
시간표 보러가기
https://academy.orbi.kr/intro/teacher/#3)
1. 수학1 준킬러는 결국 도형
요즘 준킬러가 핫이슈죠.
더이상 27+3 킬러대비하는 시대가 아니잖아요.
그럼 준킬러 대비하려면 문제를 많이 풀면 될까요?
푸는 것도 중요하지만, 먼저 준킬러에 대해 잘 알아야겠죠.
작년 수능 문제 한번 봅시다.
문제를 보자마자 이런 그림이 그려진다면
이 문제는 더이상 준킬러가 아니라
시험끝나고 기억도 안나는 쉬운 문제인거죠.
수학1에서 각 단원별로 중요한 포인트가 있기는 하지만
수학1을 아우르는 핵심은 바로
점 이거든요.
미분을 배우기 전에 배우는 수학1은 무조건 점이에요.
그래서 자연스럽게 도형이 문제에 활용되는 것이죠.
따라서
수학1 준킬러를 쉽게 풀기 위해서는
도형을 제대로 공부해야 합니다.
두가지.
1) 중학교 도형 - 증명까지 마스터
2) 고1 수학 - 도형의 방정식 마스터
이런걸 교과서 그대로 정확히 이해, 암기(!!) 해야 한다는 뜻.
이번주 개강하는 수학1 수업을 들으면
도형이 수학1에서 어떻게 활용되는지
완벽하게 정리할 수 있습니다.
수학1과 도형을 한번에!
비대면 올라이브 수강도 가능합니다.
"수학1 시간표 보러 가기"
https://academy.orbi.kr/intro/teacher/252/l
2. 수학2는 그래프와 식세우기
삼차함수의 그래프는 아주 중요합니다.
아직도 많은 학생들이 내신 방식에 익숙하죠.
삼차함수의 성질을 잘 정리해서 외우기만 해도
문제 해석이 엄청나게 쉬워집니다.
연립해서 계산하기, 이런 태도를 버려야 되요.
상승효과에서만 배울 수 있는 꿀팁.
"기울어진 축"에 대해서 알려드릴게요.
그래프를 그려서 해석할때 아주 중요한 개념이에요.
1) 쉬운 버전
: 문제에서 "x=1에서 극점을 갖는다." 가 주어질 때
직선을 하나 그리세요. 이
직선은 y=f(1) 이고 그래프가 접하는 '축'이 됩니다.
그래프 모양은 아래 그림처럼 4개 중에 하나겠죠.
스치면서 위에서 접하거나 / 아래서 접하거나
뚫.접하면서 우상향하거나 우하향하거나
만약 최고차향의 계수가 양수인 삼차함수라면
보라색은 해당이 안될테니 신경쓰지 말고
나머지 세 개 중에서 하나일겁니다.
2) 기울어진 축
: 문제에서 "f(1)=3, f'(1)=2" 가 주어질 때
즉, 함숫값과 미분계수가 세트로 주어지는 경우
조건을 해석해보면 이런 경우 정말 많죠.
이걸 연립방정식 푸는데 많이 쓰죠?
노노. 그래프 바로 그릴 수 있어요.
함숫값과 미분계수의 조합은
그 점에서의 접선(기울어진 축)을 알려줍니다.
(1,3)을 지나고 기울기가 2인 직선을 그리면
f(x)는 무조건 그 직선에 접하게 되어 있어요.
즉 y=2x+1 이 f(x)의 x=1에서의 접선이에요.
극점을 알려주는 문제나, 접선을 알려주는 문제나
함숫값과 미분계수를 알려주는 문제는
정확히 똑같은 조건인 것이에요~
아래 그림처럼 기울어진 축 y=2x+1이 있고
그래프는 보라색처럼 위에서 접하거나
초록색처럼 아래서 접하거나
주황색처럼 뚫고 지나가면서 접하거나....
이렇게 함수의 그래프를 '축'이라는 관점에서 이해하면
그래프를 아주 쉽게 그릴수 있고
이 칼럼에서 설명은 안했지만 식도 간단히 세워집니다.
(여기서 축은 x축 뿐만 아니라 평행이동된 축,
또는 기울어진 축도 포함되겠죠)
"셀렉션 - 삼차함수" 특강을 들으면
3시간만에 삼차함수에 대한 정말 많은 것들을
체계적으로 배울 수 있습니다.
속된말로 정말 지리는 경험, 약속하겠습니다.
등급에 관계없이 정말 깜짝 놀랄거에요.
이번주말까지만 2만원에 할인중입니다.
"셀렉션 특강 수강신청하러 가기"
https://academy.orbi.kr/booking/gangnam/payment?selected_lecture=732
그럼 다들 화이팅하시고!
궁금한 점은 댓글로 남겨 주세요 :)
유튜브에서도 꾸준히 공부법 관련 컨텐츠가 업로드 중입니다.
구독 부탁드릴게요. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼?버기 0
밖이 어두컴컴해서...
-
생각이란걸안하고 서바시즌 중후반까지 1.8배속으로 강의 틀어놓고 서바풀고있었음...
-
얼버기 0
-
하..
-
3트만인데..... ㅋㅋ 검정료 더 안써서 다행
-
김승리t 강의에서 시간 주고 풀라고 할때 항상 딱 맞춰서 풀거나 부족해서 푸는...
-
https://orbi.kr/00071901928 제목이 결론
-
나우러.. 동글동글 꿀돼지얼굴어쩔거임
-
강기분 시작하려는데 이미 푼 문제나 혼자 분석한 지문도 많아서 꼭 다...
-
이따옴브리뉴
-
정원 줄인다는뉴스 기사보고 쫄아서 삼반수 포기하고 경상대 경영으로 돌아가는데 삼반수...
-
누구야 팔취안돼!!
-
이원준 강민철 0
강민철 풀커리 이원준 독서 시너지 좋나요?? 문학 강의를 누구 들을지 고민되네요…
-
오늘 문자 올라나
-
뱃지 4
제발 메일좀 읽고 달아주세요 7일에 보냈는데 아직도 읽지도 않고..
-
졸업앨범받음 1
내일졸업
-
인하공업전문대학이구나
-
편입이였네
-
여기로 과외문의도 오는데 과외학생들에게 내 똥글을 보여줄 순 없어
-
遅く( ) じゅうじまでには かえってよ。 類は ( )を よぶと 言う。 * 類: 종류,...
-
어라??
-
중독되네 아이고..
-
누가 언팔했냐? 2
기분도 안 조은데 하.....
-
택시기사들 특) 1
100원 더 벌려고 세워달라는데서 안 세워주고 꼭 좀 더 감 이씨발것들이진짜
-
사범대 가서 cpa 준비 가능한가요?
-
뭐가 더 어려움?
-
22번만 푸는데 좋은듯
-
국어 사설 4
평가원은 98 밑으로 내려간 적이 없는데 왜 사설만 보면 이렇게 말아먹지 이래도 이게 내 문제인가
-
기대 기숙 2
시대 기숙도 친목 심할까요? 기숙 특성상 어쩔 수 없다고 봐야하나 ㅜㅜ
-
눈이랑 코성형이랑 턱이랑 광대만 깎으면 됨
-
24수능 샤프 뭐냐
-
고이난아
-
홍익대 합격생을 위한 노크선배 꿀팁 [홍대25][돈까스맛집] 0
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
옛날 합격증이에요…. 누가 뱃지 하나 달라고 하길레…..
-
24는 휴학 확정인곳 꽤 있는걸로 아는데 25는 잘 모르겠네요
-
얼버기 3
ㅇ
-
지방 평준화 일반고에서 학종으로 중앙대 AI학과 진학 힘들까요? 2
원래 전 공부는 뒷전이고 친구들과 놀거나 게임만 하는 그런 학생이었는데 1학년...
-
딱히 대치키즈들처럼 평균 순공 12시간 찍고 그러진않았는데 입시드라마 보면 속 존나...
-
지금 최초합한 곳 하나 있고 추합 두개가 확정적으로 될 예정인데 추합1은 1차추합에...
-
언제죽ㄱ지
-
꼬리까지바싹튀겨서
-
사랑한다 연세 들으면서 자게 빨리 발표좀
-
과탐걱정이 너무되네요ㅠㅠ 물리지구도 열심히해야하는데
-
제일 늦게푸는 사람이 마시기
-
젭알
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
이게 뭔..
첫번째 댓글의 주인공이 되어보세요.