경제학과와 과탐의 연관성(경험에 비추어)
게시글 주소: https://susi.orbi.kr/00066174560
최근 이공계열의 학생들의 경제학과 진학이 부쩍 많아진 것 같습니다.
저 또한, 과거 이과 학생이었고, 물리1 화학2 수능 응시 후 대학에 진학한 학생입니다.
많은 학생들이 과학탐구를 공부하였던 것이 아깝기도 하고, 경제학과 기존 이과공부의 차이에 대해 많은 거부감? 혹은 공포감을 가지고 있을 것이라고 생각합니다.
하지만, 제가 경험한 결과 학문이라는 것이 많이 연결되어있고, 저는 물리1 화학2 과목에서 공부했던것과 유사점을 많이 찾을 수 있었습니다.
우선 미시경제학 파트의 일반균형 파트에 대해서 간략하게 말씀드려 보겠습니다.
경제학에서 일반균형이라 하면, 모든 소비자가 예산제약하에 효용이 극대화 되는 상품묶음을 선택하고, 모든 기업은 주어진 여건 하에서 이윤을 극대화하며, 소비자가 원하는 만큼 생산요소를 공급하고, 상품시장과 생산요소시장의 수요와 공급이 일치하는 균형점을 의미합니다.
이때 생산은 잠깐 제외하고, 순수 교환시장에서만 생각해 볼 경우
이때 소비자간의 계약 가능점들을 이은것을 에지워즈 박스(위 그림입니다.) 계약곡선이라고 부릅니다.
이때 우리는 최적의 균형점을 찾기위해서 '미분'을 사용합니다.
보통 물리에서 미분은 속도를 미분하여 가속도를 구할때 사용합니다. 마찬가지로 경제학에서는 효용의 변화량 즉 한계효용을 구하기 위해서 미분을 사용합니다. 우리가 물리, 수학에서 공부하였듯 미분은 '변화량'개념이기 때문입니다. 이를 통해서 A를 한개 얻었을때의 한계효용, B를 한개 얻었을 떄의 한계효용 등을 구하기 위해서죠.
그리고 이 균형점은 각 소비자들의 A, B 상품의 한계효용비가 일치할때 이뤄 집니다.
즉, 다르게 설명하면, 서로 다른 두 소비자들의 각각의 물건의 가속도가 일치할때가 최적이라는 뜻이 됩니다.
이를 화학2에서 배우는 화학반응식 적으로 설명하자면, 화학식에서의 우변과 좌변의 반응 속도가 일치할 때라는 뜻 입니다. 즉 평형상수 개념이 떠오릅니다.
그런데 참 재밌습니다. 사람들간의 최적점이 평형상수라니 그러면 여기서 하나더 생각해 볼 수 있습니다.
각 사람들의 균형점을 평형상수라고 생각한다면, 각 사람들의 효용은 반응 속도라고 생각할수 있겠네?
놀랍게도 효용식이 유사한 면이 있습니다. 물론 모든 경제학적 함수를 이렇게 표현하진 않지만 가장 많이 사용되는 콥-더글라스 함수식을 보면,
와 같이 놀랍게도
와 매우 유사한 모습을 보여줍니다.
여기서 끝이 아닙니다. 경제학에서 많이 사용되는 생산함수, 즉 노동과 자본을 투입하여 얻어지는 산출물에 대한 함수는 콥 - 더글라스 생산함수로 표현되는데, 이는
진짜 놀랍도록, 화학 반응속도식과 똑같은 모습을 보여줍니다. 문제를 해결하는 과정 또한 유사하구요.
이렇게 화학2와 연관되어있는 부분 말고도 경제학에는 과학적 사고방식과 연관되어있는 부분들이 많습니다.
예를 들면, 최근 가장 활발하게 연구되고있는 DSGE모형(동태확률 일반균형)은 미시적인 모든 사람들의 행동을 확률적으로 규정하고 이를 적분하여(쌓아올려) 거시적으로 경제적 동태를 예측합니다.
마치 양자역학에서 미시세계의 작은 원자의 행동들은 확률적으로 계산하고, 거시적인 현실세계에서의 움직임은 역학으로 구현해 내듯이요.
금융분야로 넘어간다면, 그 유명한 블랙숄즈 방정식이 브라운운동에서 차용된 식이라는 것 또한 유명합니다.
브라운 운동 공식
블랙 숄즈 공식입니다. 이처럼 물리학 또한 경제학에 영향이 많고 유사한점이 많다는 것을 알 수 있습니다.
이렇게 생각보다 학문들은 굉장히 유기적으로 연결되어있고, 사회과학에서 가장 수리적인 분야인 경제학은 그 영향을 가장 많이 받은 학문 중 하나입니다.
저처럼 물리1 2 화학1 2 까지 고교과정에서 모두 학습하였고, 순수 이과였지만, 경제학과에 관심이 생긴 학생들은, 이제것 배워왔던 공부의 아쉬움과 앞으로 전혀 다른것을 공부해야한다는 두려움이 있겠지만, 적어도 경제학에서는 그렇게 아쉬워 할 필요도, 두려워 할 필요도 없다는 것을 말씀드리고 싶습니다.
결국, 수능은 저희의 많은 지식을 테스트 하는 시험이 아니라, 수학능력 시험이며, 수리적, 과학적 사고방식은 어디든 활용 활 수 있는 좋은 무기입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
;;
-
QED
-
수많은 합격증을 뚫고 메인에 갈 수 있는 방법은 무엇일까
-
솔직히 서울가고싶음
-
반박시 North 고려대학교 ㄱㄱ
-
안그래도 4명 정원에 문디컬 최상위라서 매년 허수 표본 심어져 있고 실지원 점공...
-
고2때 오르비 시작했는데 고1때 상담에서 담임쌤이 너정도 내신이면...
-
닉변완 10
조발감사합니다 감사합니다...
-
연대를 붙었으니 2
서울대를 편하게 기다릴수 있겠군요 ㅎㅎ
-
지거국에도 인서울처럼 라인이 잇음뇨
-
기차지나간당 2
부지런행
-
하 인제대 2
조발 안하나ㅠㅠ
-
웰컴키트 같은 거 있나 궁금해서 찾아보는데 갑자기 경복대가 나오노 못 알아채서 영상...
-
나도 자랑할래
-
ㅈㄱㄴ
-
우울하다 우울해 5
다들 부럽구만..
-
애매하다 점수가 하아…
-
계산기 3
예비 12번인데 점공계산기랑 10넘게 차이남!
-
문득 이런 생각이드네요.. 요즘 요양병원 가는 어르신들이 많이보임ㅠㅠ
-
내신 6.8이 사범대 들어갈수 있나요? 제 친구가 들어갔다고 하던데..
-
중3때 올비 첨 햇는데 17
ㄹㅇ 빠른거엿네..
-
타오르는 빛의 성전 예 있나니 누가 길을 묻거든 눈 들어 관악을 보게 하라
-
영어공부량!! 1
매주 모고 3개 정도에 + 매일 지문 3개씩 풀면 좀 많은가요..? 등급은 2정도...
-
ㅎㅎ 합격하신 분들 정말 축하드립니다
-
야 코 걔 맞음ㅋㅋ 시청자좀 차면 시작한댕 tiktok.com/live/soeun
-
고3 겨울방학에 독감 걸려버림 하 아파서 3일 날림 ㅈ됐네ㅠㅠ
-
현역이라 강사들이 언제까지 수특 강의 완강하는지 몰라요 ㅜ 혹시 작년에는 언제쯤...
-
사실 지금도 가능… 완전 100프로는 아닐지라도… 합격하신 분들 모두 축하드려요
-
우리 서강대는 무슨일이야???
-
제가 어제 해봐서 앎
-
떴으니깐 올리지 ㅋㅋㅋㅋ 어 이게 아닌가
-
내 본처가 되도록
-
왜 사람들이 헤스법칙을 혐오하는지 알거같은
-
서울교대 다니고 있는데 교직은 안하고 싶고, 국어에 자신있어서 궁극적으로는 변호사가...
-
연대 0
붙었다…. 아 축하합니다 보고 눈물나오네
-
이름에 수험번호까지 다 까고 보냈는데도 작년 외대부터 올해 중대까지 다 안줌요..
-
이제 마음편하게 잘수 있겠네요 ㅠㅠ
-
연세굿즈 GOAT 12
연세키스킨 ㅇㅇ
-
안떴네
-
민초vs반민초 1
전 민초를 좋아해요
-
매번 이 시즌마다 재탕하는 사진이지만 그냥 레전드 사건이라 재탕해도 무방함
-
원자의 구조 그런 데 들어가면 같은 놈들의 같은 실험 알파 입자 산란 실험이나...
-
연대 추합 0
식영 예비 14번인데 거의 안돌겠지?
-
왜냐면 합격하지 못했으니까 사실 원서를 넣지도 않음
-
안입는다 이지랄하면 쩨트킥 존나날림
-
그때로 돌아가도 객기부리고 안 챙겼을것 같아서 금방 접었음
인정.
오...그렇군요
수능 수학은 계산이상의 것을 요구하는 측면이 있어서 사실 대학 공학이나 경제학 공부의 경우
수학을 도구로 사용하기때문에 막 엄청난 수리적 능력을 요구하진 않습니다.
다만 수능 잘본 학생들이 보통 머리도 좋고 숫자도 친하니 잘할 가능성이 높을 뿐이죠
오펜하이머, 아인슈타인 등도 수학을 잘하긴 했지만 수학이 특기는 아니었습니다. 영화에서도 나오듯
"The important thing isn't can you read music, it's can you hear it. Can you hear the music, Robert?"
악보를 읽을 줄 알면 괜찮습니다.