랑데뷰 1D2K - 251130
게시글 주소: https://susi.orbi.kr/00071037404
랑데뷰 1D2K-제1회.pdf
랑데뷰 1D2K 자료 제작중입니다.
1 day 2 killer
하루에 2개의 킬러문항을 다루는 자료입니다.
자료에 탑재되는 문항수는 4~6문항 정도입니다.
평가원 기출 킬러난이도의 문제와
그 문항의 완벽 분석을 위한 단계별로 제작된 자작문항 3~5문제
그리고 기출 킬러 문항보다 어렵게 제작된 마지막 변형 문항 1문제
자료에 포함되는 킬러 문제는 [첫 번째 문제]와 [마지막 문제]로 2문제입니다.
그래서 1D2K
제작되는 대로 꾸준히 업로드 하겠습니다. 작년 수능 문제들에 관한 제작은 반드시!!!
킬러가 아니더라도 중요한 문제들은 모두 제작할 계획입니다.
우선 작년 수능부터 [대부분 문제들이 미적분과 수2 문제가 될 예정입니다.]
작년 수능 미적분 30번 문제
[간단 설명]
(1) 조건(가)에서 b=2(pi)a 인 것을 알 수 있습니다. (sinx=x 의 해가 x=0뿐인 것을 알아야겠지요.)
(2) (1)을 만족시키는 a의 값은 1,3/2,2 로 제한됩니다.
(3) 조건(나)에서 a,b의 값을 확정할 수 있습니다.
(4) 이후 N축으로 풀어가면 쉽게 답을 확정할 수 있습니다. (N축 풀이는 랑데뷰수학카페(네이버) 자유 게시판에 올려뒀습니다. 예전에)
(5) N축을 이용하지 않을 때는
f'(x)=0의 해를 구한뒤
각각의 해에 대한 f''(x)의 부호로 극대인 값들을 구한 뒤 alpha1을 찾으면 됩니다.
(1) f(0)=0에서 b=n(pi) (n은 정수)
(2) f(pi)=2(pi)a+b에서 b=-2a(pi)
(3) (a,b)구하면 됨
(1) f'(x)=0의 해를 구하기 위해 g(x)=2x-sinx 라 하고 g(x)가 증가함수이고 g(4pi)=8pi이므로
g(x)의 값은 pi/2, 3pi/2, ....15pi/2 가 가능하고
(2) 그 중 f''(x)>0인 x를 찾으면 된다.
a=1/2, b=4pi 인 것을 구하고
step2 과정과 유사하게 풀어가면 되는데 좀 더 까다롭다.
풀이과정에서 1/2x+sinx=n(pi) 의 해는 x=2n(pi)인 것을 y=1/2x+sinx의 그래프를 이용해서 구할 수 있다.
a가 홀수일 때와 짝수일 때로 나눠서 풀어가야 한다.
f'(x)의 부호를 파악하기 위해 증감표를 이용한 곱함수의 부호를 파악하는것도 좋다.
조건(가)에서 (a,b)는 (0,0), (-1,1), (-2,2) 중 하나인 것을 구한다.
각 경우에서 (나)를 만족시키는 (a,b)를 구하고 계산 마무리
랑데뷰 집필진 [오세준 선생님]의 변형문제이다.
setp3 와 관련된 문제이고 조금만 비틀었을 뿐인데 난이도 훨씬 어려운 문제고 좋은 문제이다.
2K의 두 번째 문제이다!
올린 pdf자료에 빠른답까지 공개되어 있습니다.
풀이는 제공되지 않지만 자료를 다운 받아 풀어보고 위 간략 해설을 참고하면 풀릴거라 봅니다.
다음 자료의 주제 및 문항 정보는 [251128]이고 게시 예정일은 1월6일입니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
(많이 볼 수 있게 좋아요 부탁) 데이터에 관심이 많은 사람으로서 정시 컨설팅의...
-
여캐일러 투척 1
-
부탁드려요ㅠㅠㅠㅠ 원래 김동욱 들엇는데 시대가 최고라길레..0
-
그래도 만족해야지 그지
-
ㄹㅇ
-
절대절대 학생이 내가 알고 있는 것을 당연히 알 것이라고 속단하지 말 것.
-
제발 붙어라!!!
-
https://orbi.kr/00071136159 저처럼 억울하게 모르고 있다 당하지 말아주세요
-
서울대 점공 0
65%에서 멈췄네요……… 1차 발표 돼야 좀 더 들어올 듯
-
헬스터디에서 건희햄이 젤 잘된느낌임 ㅋㅋ 젤 빌런느낌이었는데
-
수학을 매우 잘한다는게 기본 가정 어떤 사람은 이렇게 주장합니다 251120 ->...
-
설대식 몇점부터 안정권인가요?
-
독학으로 쓸만한 교재 있나요? 수능 95점이었어요
-
몇 명 정도 되나요…?
-
뭐하나 도움이 되는 글이든 좋은 글이든 쓰고 싶은데 4
합격발표 나면 꼭 하나 써볼게요 주제 추천받아요
-
공부도 못하고
-
진짜 성대가 조발하고서 짧고 굵게 우르르 들어오네요
-
다들,, 대학레베루가 너무 쟁쟁해서,,
-
어차피팔로우알림안와서썰지도않음
-
왜 안하지..
-
출처 : 2017 샤인미 0회 가 30번 (무료배포, 문제시 삭제) * 제 해설...
-
그래도 현직 대통령이 가오 없게 체포영장 ㅈ까고 튀었을까요?
-
하ㅋㅋ
-
643대 정도 갈려나??
-
문닫고라도 들어가고 싶어...
-
이거이거 밧줄 위치도 너무 이상하고.. 사실 몸에 묶인게아니라 우는척하면서 힘자랑하는게아닐까?
-
새벽에 자지 않기....
-
용 잡았다 3
-
재수때 갔으면 좋았을텐데...... 근데 점공 보니까 가능성은 있어보여서요
-
붙을거야아근데ㄹㅇ불안한데2월어케기다리지그래더점공보면20대정도밖에차이안나니까붙겟지?아니...
-
동생이 평균적인 수준의 중2 내신영어는 100점 가까이 나오는데 문법은 중1부터...
-
서울쥐 <- 막 강의 찍고 교재 만들고 화2 물2 라는데 성적표를 본 적이 없음....
-
희미한 눈발 이는 어느 잃어진 추억의 조각이기에 싸늘한 추회 이리 가쁘게 설레이느뇨
-
점공계산기 2
시대 점공 계산기는 재종생 대상으로 뿌린건가요? 재종 비재원생인데 사용할 수 있는 방법은 없나요?
-
수시는 파이터가아님 .
-
애플펜슬 3
젤 싸게 구하는 법 알려주세염..
-
고2 때 기하 시작하고 노베입니다. 방학 때 선행 해야돼요 아님 학기 중에 해도 되나요?
-
가격은 30만원 내외에서 컷되면 좋을듯
-
성대 글경 장학 2
이거 최초합만 주는건가요?? 662.X라 대충 2차 추합 정도에 들어갈 것 같은데...
-
이번엔 자아 없애고 가르쳐주는대로 한번 해보게…
-
ㅈㄱㄴ
-
토익 결과 5
왜 가채점에서 더 빠지농.. 에헤이 조졌네요 RC는 20분 남았을때 잘 한줄...
-
조정식 , 션티 풀커리로 영어 만점 쟁취하자
-
토익 점공 0
카투사 달성
-
얼마전만해도 13이었는데
-
구거 2
문학비문학 합쳐서 하루에 2-3지문 좀 적나요?
-
130 견적 봤는데 128말고 256으로 올려야겠음 그렇게 올려도 127이네
-
2학년 부터 정시파이터였는데
-
교대 면접 준비 0
교대 면접 준비해야되는데 시사나 사회 이슈? 같은거 알려주는 인강이나 책 있나요?...
-
작수 미적분 76점 러셀 단과 어떤 강사가 맞을까요? 3
20,21,22,28,29,30 틀이고 22,29는 실수로 틀렸습니다… 어떤 선생님...