동생이 복소평면이란 걸 주워듣고 와서
게시글 주소: https://susi.orbi.kr/00071139797
물어보는데 이게 뭔가요...?
수학 상 내용같은데 정시충이라 모름,,
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아니 1
왜 그쳐?
-
난 브레턴우즈보다 어려운 지문을 본 적이 없음 그냥 수능 국어 기출에서 홀로 고고히...
-
것 같다 되게 사소한 거에 쉽게 행복해지고 별로 안 우울해하고 우울해도 잘 털어내는...
-
이번에 수능 본 현역이고 화작 1틀 백분위 98입니다 주변에서 과외를 해보는게...
-
지금해야 9월입영이고 지금안하면 더늦음..
-
풀어보니까 지문자체는 추상적이고 난해해도 문제 선지 판별이 쉬워서 풀만하던데요......
-
시발점을 제대로 들어본 적이 없어서 다지고 싶은데.. 좀 무린가요
-
처음 분자량 파트하고 있는데 연습문제 풀때 문제당 길면 5-10분쯤 걸리는것 같아...
-
아 치킨 먹고 싶다 13
어제 돈가스 먹었는데 이게 사람인가
-
너무 힘들ㅇ어… 2
공부 안할거야 시발 다 꺼져 시발시발시발 토요일에 담요단공부할거야
-
모르겠고 돌려줘....... 성 경영 최초합 축하드리고요 더 높은 데 가세요 ㅈㅂ...
-
다른 학교와는 다르게 특기생을 안 뽑아서 프로 나가는 경우가 거의 없는데,이번에...
-
재종 수업때 자니까 12
쌤이 저 깨우고 나와서 문제 풀어보라고 함 그래서 정확히 푸니까 별 말 안 하심
-
너무 좋아 복학 안 해도 돼서 너무 좋아 너무 행복해 어딜 가도 행복해 설공 가서...
-
그럼 학년은 진급하는건가
-
눈온다 4
몇년만이지
-
이이잉
-
서울에 연고전이 있다면 서울 제외 수도권엔 아인전이 있다 갠적으로 이미지가 아주대가...
-
궁금
-
현역 5 재수해서 3 삼수/삼반수 생각인데 확통 1등급 받고 싶음. 현우진 커리...
-
술 퍼마시면서 날밤 깔 거임!!!! 셋이서 6병 목표로 가보자고 ㅋㅋ
-
기하 차별아닌가요? 소수과목 차별하는건가요? 제정신이에요?
-
야 사수생이 어케 귀여워? 내일부터 문학 기출분석 실시 16회분 분석 ㄱㄱ혓
-
ㅠㅠㅠ
-
토익 갱신해야해서 토익 공부 하다가 끝나고 나면 할게 없는데 머해야함? 백수마냥...
-
넘 맛있다
-
2.5수 하면 안되는거임?
-
평화로우려면 주체의 삶을 회복해야한다는데 기숙사에 사는순간 주체라는건존재하지않음.....
-
중대 정도면 3
점공이나 ㄴㅈ 참여 비율 높음??
-
그냥 Goat이신분들말고 기하만 잘하는 케이스
-
여자05고 현역 수시합격,대학포기(정시 언미생지로 낮2낮3254)->재수 정시...
-
열심히 쓴 글 많이 도움되기를 바라며 끌올해봅니당 좋아요 하나하나, 도움 받았다는...
-
계산기상 43번 주네요.. 659.5x입니다
-
21명 모집 낙지 맨 마지막에 65-68명 중 25등 근데 실지원자 102명...
-
이것뭐에요 4
이건 뭐임? 가짜 표본??
-
올해최고의게이 7
다군6칸떨어질까봐 떨던 나. 까고보니 안정인건에대하여
-
전 설 연휴 일주일 빼고 남은 2주간 약속 8번 잡힘요 친구들아 정말 보고 싶지만...
-
고대 생명공학부 고대 화공생명공 두 개 커트가 대략적으로 어느 정도일까요ㅜㅜ
-
겨울방학에는 어쩔 수 없겠징..
-
예비고2 입니다! 백호와 한종철 선생님 중 겨울방학에 어떤 분을 들어야 할지...
-
지난번에 쓴 '교육학과 장환영 교수님과의 면담'에서 이어지는 내용입니다...
-
에바임뇨? 그래보이긴함
-
물론 동덕여대 이번에 들어가려는 25학번 예비 신입생들을 전부 싸잡아서 비하 하려는...
-
문학 비문학 선택 뿐만아니라 비문학/문학 쉬운지문 어려운지문 기준으로 어느정도...
-
사탐으로 메디컬 3
사탐 문디컬 의치한수약 누가 쭉 정리한 개시글 본기억이 있는데 못 찾겠어요 ㅠ 도와주ㅝ요 옯인들
-
윈터 멘탈 ㄷㄷ 12
악플러 컷
-
수학 문제 계속 풀 때 15
노래들으면서 해도 괜찮나… 그냥 집중해서 푸는게 나으려나요?
-
동일과기준 ㅇㅇ
고등학교내용 아닐걸여
직교좌표계에서 y축 대신 허수축 x축 대신 실수축 놓는거 이럼 모든 복소수를 평면에 표현가능
z=a+bi일 때 (a,b)에 표현.
이걸 응용한 유형문제가 있나요?
a+bi꼴을 평면상에 표시한거로 아는데...
다만 저걸 고등학생이 어디서 듣고 왔는지는 모르겠음...
학원에서 이걸로 문제 푸는 걸 알려줬다는데....
도대체 뭔 어둠의 스킬을 알려준거야
드 무브아르의 정리 그런건가?
일본에선 고딩때 배운다던데
갈수록 복잡해지네요.....
하 일본한테도 밀리는데 여기서 교육과정을 더 깎아먹는다니
신기하네….
겨꺄애
밑이 음수인 지수함수같은거 함 찾아보시면 관련설명 나옴 ㄱㄱ
교과외
근데 별로 안 어려워요 구글에 검색해보시고 설명해주세요 학문적 호기심이 있는 친구네요!
이걸 응용해서 푸는 문제 유형이 있을까요? 학원에서 배웠다길래
오일러 공식때문에 각의 합이 복소수끼리의 곱으로 표현되거든요. 그걸 이용할 수 있지 않을까요
어렵네요...고1한테 뭔 이런 걸....
아.. i^4 이거 할때요?
그거 필요없어요
너무 복소평면을 과소평가하는 가르침이에요 그건
복소평면 자체에 대해서 궁금한게 아니라면 굳이 알려줄 필요 없을 것 같아요
아아 그런가요 그냥 보고 넘기라 해야겠네요
복소수 거듭제곱할때 쓰는건데 필요없어요
그냥 계산으로 밀고 나가는 게 더 편한 풀이일까요?
편하기야 복소평면이 100배 편한데 고1 1학기 수준에서는 그렇게 숏컷을 써야만 내신이건 모의고사건 100점을 받을 수 있는 건 아님
그런가요..그냥 대충 넘겨야겠네요
25수특 미적에 쓰면 생각하기 편한 문제는 있는데
딱 거기까지
유튜브에 오일러 공식 설명하는 영상 (Dmt part)에도 간략히 언급 되긴 해요
고딩 선에서 문제 푸는데에 필요할까 싶긴한데
먼가 먼지 알 것 같은데 기억이 안 나네요 ㅋㅋ. 친구가 갓반고라 거기서 복소수할 때 드무아브르의 정리를 즐겨썻던 그거 같은데, 제 기억에 그렇게 대단한건 아니였던거 같아요.
딱 내신용.. 그때 말고는 대학가서 배우지 않는 이상 존재조차 까먹고 살아요
내신대비학원이라 알려줬나보네요
고딩과정에서는 딱히 막 사용할 필요가 없는.. 없어도 잘할수있습니다
z=x+yi
한번도 쓴적 없음
드 무아브르 정리가 중요하죠ㅡ주기성을 암산가능
근데 삼각함수 선행 정돈 해둔 친구여야 잘 응용할 수 있어요
삼각함수 모르는 애한테는 굳이 설명해주면 복잡하기만 할 거 같네요...ㅋㅋㅋ
댓 다는 사람들도 잘 모르는 거 같은디
복소평면 (complex plane)이라는 건
C = R x R
즉, 실수체의 곱집합이라고 본 겁니다
복소수 집합을 실수의 순서쌍(Ordered pair) (x, y)들의 집합으로 보고
a,b,c,d, k를 실수라고 할 때
k(a, b) + (c, d) = (ka + c, kb + d)
(a, b)•(c, d) = (ac - bd, ac + bd)
로 정의하면
우리가 아는 복소수 연산과 동일한 연산 구조를 가진 체를 이룹니다.
이렇게 했을 때 좌표처럼 평면에 점으로 복소수를 나타낼 수 있는데 그걸 복소평면이라고 부릅니다.
필요 없는데 가르치는 이유는
복소수의 곱연산이 회전변환(크기도 고려해야 하긴 합니다)이 되기 때문입니다.
가령 방정식 x^3 - 1 = 0의 해 w 같은 경우 평면에 나타냈을 때의 동경의 각이 특수각이기 때문에 거듭제곱을 (ex. 60도씩) 회전으로 생각해서 간단하게 연산을 할 수 있습니다.
윗분이 말씀하신 드 무아브르의 정리가 복소수의 거듭제곱을 회전으로 생각할 수 있다는 정리입니다
대학에서도 복소해석학을 배우지 않는다면 필요가 없는 내용입니다
상세한 설명 감사드려요 :)
공업수학이라고 대2때 배우는데 공대인데도 안 배우는 과도 많음
수학(상) 복소수 단원에서 1+루트3i/2 꼴의 거듭제곱에서 유용하게 쓰임
거듭제곱을 원 회전수로 표현할 수 있어서 복소수킬러 빠른풀이에 꽤나 자주 쓰입니다
제가 고1이었을때도 많이 썼어요
복소해석학 독학 중이었는데 이 글이 딱 나오네
이 글은 딱 나오잖아?
수시충인데 1학년 내신 수학에서 되게 요긴하게 쓰여요
복소평면 쓰면 유명한 복소수 거듭제곱 안외워도 되고, 가끔식 까다로운 문제들 삼각함수에서 쓰는 일반각이나
복소평면에서 기하학으로 처리하는 문제들도 나와서 알려드리는게 좋을듯?