심심한 기출분석 (230922)
게시글 주소: https://susi.orbi.kr/00071661968
1. 극단적인 경우 생각해보기
문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저 보는 것이 좋을 수 있다.
2. 불변량
시행 각각을 전부 파악하는건 불가능하다. 변하지 않는 양을 찾아 걔네는 고정해놓고, 변하는 애들만을 관찰해야겠다.
3. 문제풀이
f와 g 관찰) 주어진 함수를 해석해보면
f는 극값을 가지는 최고차항의 계수가 양수인 삼차함수. (또한, 3에서 극댓값 8)
g는 x<t에서 f를 f(t)에 대해 선대칭.
이정도 해석은 바로 할 수 잇어야 될거 같습니다.
즉, g는 어떤 t에 대해 다음과 같이 그려지겟죠
(x=t이전에는 초록색 그래프를 타다가, 그 이후에는 검은색으로 전환)
h라는 함수를 알기위해, f라는 함수의 근을 알 필요가 잇슴미다.
f는 3보다 작은 지점에서 감소하므로 근을 하나 가질 수밖에 없다는 것을 생각해줘야겟죠. (그 근을 alpha라 합시다.)
h관찰) h라는 함수를 알기위해 극단적인 경우를 먼저 봅시다.
t가 굉장히 작을 때를 생각해보면, g가 x=3 이하에서 근을 2개 가짐을 알 수 있습니다.
여기서 t를 점점 키워보며 함수에 대해 관찰을 해봅시다.
이 때, 중요한 점은 t=3까지 t를 증가시키면서, x>3인 g의 근의 개수는 불변량이므로 고려하지 않아도 된다는겁니다.
불연속이 될만한 점은 x=alpha밖에 없습니다. 이 때를 봐주면 근의 개수가 2->1->0으로 바뀌며 불연속점이 됨을 쉽게 확인 가능합니다.
이제 t=3 이후에서는 h가 불연속이 되는 점이 딱 하나만 존재해야 한다는 것을 알고 갑시다.
이번엔 f가 감소하는 구간을 봐줘야하는데 이 때, f의 극댓값이 f(t)에 대해 대칭이 될겁니다.
즉, 이 대칭된 값이 x축에 닿는다면, h의 불연속의심점이 생기게 되겟죠, 케이스를 분류해줍시다.
I) 안 닿는 경우
즉, t가 f의 극소지점까지 이동하면서 한 번도 g가 x축에 닿지 않는다는건데 이러면 당연히 근의 개수는 항상 0개가 됩니다. 즉, h의 불연속점이 1개이므로 문제를 만족하지 않습니다.
II) 닿는 경우
닿는 경우는 2가지로 나눌 수 잇을겁니다.
i) t가 f의 극소지점까지 이동하고나서야 닿는다.
ii) t가 그 이전일 때 닿는다.
둘 중 어떤 경우를 먼저 보느냐에 따라 풀이 속도가 달라지겟죠. 결론부터 말하자면, (i)의 경우를 먼저 봐야하고, 그 경우가 답이 됩니다. 왜 (i)를 먼저 봐야하는지 2가지 방법으로 생각해보죠.
1) 특수.
(i)의 경우가 (ii)의 경우보다 훨씬 특수한 경우임을 알 수 있습니다. 특수한 경우를 먼저 보고, 일반적인 경우로 확장하여 보는 것은 기본입니다.
2) 극단적인 경우.
h에 대해 알기위해 극단적인 경우, t가 굉장히 클 때를 생각해봅시다.
그러면 h의 값은 0이 됨을 알 수 있습니다.
만약 (ii)의 경우라면, 닿앗을 때, 불연속점이 생기고,
(근이 있다 하더라도, 닿는 경우 이후에 있을 수밖에 없음, 즉 아까 설정한 불변량은 아직도 불변량이다.)
그 이후 h값이 2 이상이 됨을 알 수 있습니다. (닿은 이후 좀 더 내려갈 테니까)
즉, 이 때 h값은 2 이상인데, t가 굉장히 클 때 h값은 0이므로 h가 2->0으로 가는 루트가 필요하겠죠.
또한, h의 값은 이산적으로 변할 수밖에 없습니다.
따라서 이 이후 h는 불연속점을 하나 이상 또 가지게 된다는 것이고, h의 불연속점은 3개 이상이 됩니다. (alpha, 닿앗을 때, 그 이후)
이는 문제를 만족하지 않음을 알 수 있습니다.
마무리)
(i)의 경우에서 f의 극솟값은 4가 되어야겟고, 비율관계를 이용해 f를 결정해주면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이명학 신텍스 강의는 2026으로 교재는 2025로 해도 별 문제 없을까요?
-
ㄱㄱ
-
지금 내앞에 뜨거운물을 넣고 2분간기다린 육개장이 있지 하하하
-
2등 해봣다 먼지는 비밀이다
-
수학나형의최종보스...
-
히히헤헤하하
-
탄 거 아니고 마이아르된거임.
-
쇼츠, 디스코드, 레딧 무한반복
-
전 쌍꺼풀 + 165이상 이상형이니까 맘껏 댓글로 고고
-
내일이 벌써 걱정되는군
-
연휴 끝이다 1
이제 빨간날이 아니야
-
키링 pdf 집앞 조선소 가서 뚝딱뚝딱 하는 양심없는 친구들이 있더라고 그렇게...
-
탈릅. 10
잘 지내.
-
나가야겟다 3
에휴다노
-
이런 애들 보면 꼭 앉아서 멍때린 시간하고 중간에 물뜨러 가는 시간까지 재고있음
-
싯팔
-
6모미적+27점=수능 미적
-
입술에서피나 8
후우웅
-
우리들은 현실적인 문제가 닥치면 그 상황을 어떻게 해결해야 하는지에 대한 대책은...
-
아직 경력 없습니다.. 수학(확통) 영어 사문 일케 생각하고잇는데 각각 과목마다...
-
거지임뇨
-
ㅇ
-
ㅋㅋ병신들
-
디카프 어댑터 0
프로모터는 재탕이 많은걸로 알고있는데 어댑터도 작년 문제 재탕이 많나요? 전년도...
-
수능이든 토익이든 뭐든 영어 잘하시는 분들은 원래부터 잘하셨나요? 만약 그러지...
-
옛날 생각인데 일어나자마자 공부를 하면 뇌가 공부에 맞게 설정 되는 듯. 그냥...
-
귀여워
-
...
-
이게뭐냐 4
메타라도 됨?
-
방굽습니다 8
-
동강대의대 5
동강내기 ㄱㄴ?
-
설 전날부터 할머니집 와서 아직까지 있는중
-
사탐런한 애들아 작수 과탐 성적 알려줘라
-
설대 투과목 가산점 주는데가있고 안주는데가있었음 설자전목표로 하고있었는데 자전은...
-
응응 남들은 순공 자랑할 때 나는 순잠을 자랑할게
-
아 연애하고싶다 나정도면 ㅁㅌㅊㄴ
-
뭐 했다고
-
건강이 최고최고입니다
-
대체 왜 10
경제를 선택하면 재수가 확정된다고 말하는건가요? 사문 경제 중 고민입니다. 경제...
-
새벽 2시에일어나서 순공최대찍어보자 이러고 18시간 살짝안되게 하고 죽은적있음
-
몰아서 하는 바람에 힘들긴햇음 1,2학년 땐 맨날 학교에서 자고 공부도 시험기간...
-
9시간 정도가 최대였음 사실 그 마저도 인강 뺑뺑이가 많아서 머리 별로 안 아파씀
-
집에서 파묘 봄 2
재밌다
-
물국어는죄악이다
-
일단 잠
-
14시간 30분의 벽은 ㄹㅇ 안깨지더라고
-
ㅅㅂ 계속 엉덩이에 종기남 특히 엉밑살에 나면 일어설 때 ㅈㄴ 아픔
-
6모 연계공부 안하고 봐서 망치고 9모때까지 국어 열심히팠는데 끝나고 물어보니까 쉬웠다더라 ㅆㅂ
으아 글이 별로다
뭔가 채찍피티같아요
7ㅐ추
벌써 특수마인드 장착 잘했네
ㄹㅇ 푸는 순서가 딱 저게
정석적임
독자에게 극단적 선택을 권유하는 칼럼