미적분 자작문제
게시글 주소: https://susi.orbi.kr/0008204438
갑자기 또 발상이 떠올라서 만들었네요. 마지막에 적분을 하는 발상은 문과가 할 수 없는 부분이지만 나머지 부분은 문과 분들도 하실 수 있으니 많은 지적 부탁드려요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수시러들 대상입니다 ㅇㅇ
-
비용상의 이유도 있고 6모까지 스스로 공부하면서 기초 다진 후에 6모 이후에 재종...
-
ㅠㅠ
-
흰수염고래다
-
마라샹궈vs떡볶이 10
골라주세요 지금시킬거임
-
하 ㅋㅋ
-
다들 잘자유 6
-
자꾸 허구한날 빈둥댄다고 엄마가 뭐라 하시는데 난 개백수새기고 개백수새기의 직분에...
-
ㅈ됐을때 '어떡하지?' >> '당장 무엇을 할 수 있지??' 14
라고 생각하려고 노력함요 나름 중요한 것 같음
-
아이온큐덕에 잘수가없네 10
사랑해
-
내얘기는아니고..
-
ㄹㅇ임
-
아주 작은 일이라도 성취를 해나가다보면 자존감이 쌓인다니까 4
오르비랑 릴스랑 틱톡이랑 쇼츠 조금씩 줄여봐야지
-
어지럽네 2
진짜ㅏ
-
여친 고르기 10
ㅋㅋ
-
여기서 더 낮추면 동물로 가야해..
-
ㅇㅅ낀 무조건 의대가야겠네 ㅋㅋㅋㅋ 싶은 분들 있었는데 오늘은 진짜 잘나신 분들만 있어서 괴로워요
-
내일알바가야하네 2
귀찮다
-
ㅇㅈ메타 끝났네 6
쩝
-
이거 헬보직인가요?
-
아아 여기서라도 좋아요라는 것을 받아보고싶구나.
-
가 아니라 백두산 호랑이~
-
잘자요 여러분들 6
저처럼 멍청하게 눈썹칼에 베이지 마시고 ㅋㅋ
-
알바가ぎしろよ 7
왜 또 알바가야함
-
솔직히 그냥 생긴거나 학력 능지 사회적 위상 이런 건 그냥 멀쩡한 거 같은데...
-
하.. 고민되네
-
너무 마음 아팠음. 짝사랑이었어서. 추억이네... 내가 보는 앞에서 다른 사람...
-
안되겠다 0
배민시켜야지
-
너무 대겹만 지원하면 취업 쉽지않으니 하향지원해서 중소에서 경험과 경력을 쌓고...
-
이 몸뚱이를 누가 좋아하겠음 ㅋㅋ
-
내게답을알려줘
-
엣헴
-
페이커 월즈 5회 우승하게 해달라고 빌었음 그래서 신 원망 안할거임요 나중에 교회도...
-
대학을 두 번 입학하니까 입학선물도 두배
-
진학사 기준 몇명인가용?? 제가 진학사를 안써서 ㅈㅅ합니다
-
요즘은 취사병이 개꿀이라카던데 정말인가요? 물론 부바부겠지만 먼저 입대한 애들 말...
-
팬이에요 4
팬티에요
-
제일 친한 친구가 대학붙었다는데 기프티콘 보내주고 싶어서요.. 얼마 정도가 적당할까요??
-
먹고싶다
-
https://orbi.kr/00071324915/근데 성인인데 모솔인 건 ㅜㅜ
-
내가 본 최악의 오타 12
미친개년
-
다 갔지? 19
연대와 고대 ㅇㅈ
-
한번 만나볼 여르비 구해요~
-
ㅈㄱㄴ 알람 맨날 못듣는데 어캄
-
사람이 먼저다.
-
오르비 다죽었네 6
잘자삐
-
앞에 소년은 없으니 걱정하지 마...
문과 재수생은 풀수 있는 문제인가요??
마지막에 f(x) 적분을 못해서 못 풀겁니다 ㅠ g(x)까지는 문과도 구할 수 있어요
제가 원하는게 g(x)구하는거라 g(x)까지만 구하셔도 답 구한거랑 차이가 없습니다..
g(x)가 0보다 작을때는 구할수 없는 함수가 나오는거 맞나요??
0보다 작을때는 그냥 그래프 개형만 상승인지 하강인지 유추해볼수있고 식은 쓰지 못하는거 같은데.....
g(x)가 0보다 작을때는 함수를 구할 수 없어요~ 그래서 구할 필요 없도록 했구요 그리고 문제 오류 있어서 수정좀 했어요 ㅠㅠ
이런걸 어케만들수있는지 노이해 (의심이아니라 진짜대단하심)
ㅠㅠ 풀어봐주세용..
16인가요?
맞아요~
기출에서 봤던거같은데 다른느낌으로 만드셨네요
진짜 감탄 했습니다 ㅋㅋ
감사합니다 ㅎㅎ
문제엄청 좋네요ㅎㅎ 단, 부분을 못봐서 좀 헤맷어요ㅋㅋㅋ
ㅎㅎ 좋은 평 감사합니다~
힌트좀
어디까지 하셨는데용?
(가)조건으로 g'(x)가 0보다 크거나 같고
(다)조건으로 g'(x)가 0보다 작거나 같다
따라서 g'(0) = 0이고
(가)조건에 x = 0을 대입하면 f(0)는 0이 아니므로 g(0) = 0
(가)조건에 x = 2를 대입하면 g'(2) = 0
따라서 x가 0보다 크거나 같을때 g(x) = x^4+ax^3-(3a+8)x^2이고
g'(x) = x(x-2)(4x+3a+8)이다. (단, a는 상수)
(-3a-8)/4가 0이나 2가 아닐 경우
x>0인 어떤 실수 x에 대하여 g'(x) < 0 이므로 모순이다.
따라서 (-3a-8)/4 = 0 or 2이고
(-3a-8)/4 = 0일때
0(-3a-8)/4 = 2일때
0a = 16/(-3)이고 0 0이다
(가)조건에 양변을 제곱한후 g(x)로 나누어주면
f(x) = g'(x)/g(x)이고
{ln(g(x))}' = f(x)이므로
f(x)를 1부터 2까지 적분한 값 = lng(2) - lng(1) = ln16/11 = lnk
k = 16/11
11k = 16
좋은 해설입니다 ㅎㅎ
ㄷㄷ 수학전공하시나요? 대단하시네...
g'(x)가 0보다 크거나 같고 g'(0) = 0으로 g (x)의 이계도함수에서 x=0일때 0이다가 성립안하는게 x의 구간이 한정되서 그런가요?
이계도함수는 전혀 의도하질 않아서.. 무슨 의미죠..??
x>0 때 g'(x)>=0일때 g'(0)이 0(도함순의 극솟값)이길래 g''(0)=0으로 성립하는줄 알았는대 (다)조건도 있고 정의역이 전체실수가 아니라서 성립안하네요 완전 잘못풀었습니다 ㅋㅋㅋ
얻어가신게 있길 바랍니다 ㅎㅎ..